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The mean position of the cylinder is in the mean free surface, and the cylinder is 
oscillating vertically (heaving) with a simple harmonic motion of small ampli- 
tude. The problem is studied both theoretically and experimentally. The present 
paper may be regarded as a sequel to an earlier paper (Ursell, Dean & Yu 1959) 
on the waves due to a piston wave-maker. 

The theory is based upon the usual assumptions of classical hydrodynamics, 
i.e. that the fluid is inviscid and of uniform density, and that motion starts 
from rest; the motion is then irrotational. Non-linear terms in the equations of 
motion are neglected. It is also assumed that the motion Cs two-dimensional 
and that the wave channel is of infinite length in both horizontal directions 
normal to the axis of the cylinder. The solution of the boundary-value 
problem is written as the sum of a series of certain wave potentials where 
the coefficients satisfy an infinite number of linear equations in an infinite 
number of unknowns. This theory is an extension to finite constant depth 
of the known theory (Ursell 1949) for infinite depth. Computations are pre- 
sented for the wave amplitude at  infinity and for the virtual-mass coefficient 
for h/a = 2, 4, 10 and 00, where h is the water depth and a is the radius of the 
cylinder. 

The experiments were conducted in a 100 ft.  wave channel, and were arranged 
to be two-dimensional and symmetrical about the vertical plane through the 
axis of the cylinder. The waves generated by the heaving cylinder were partially 
absorbed and partially reflected at the ends of the wave channel. The results of 
measurement thus depend on the precise length of the channel and the accuracy 
is low unless the effect of reflexion can be allowed for, as was done in the earlier 
wave-maker experiment. A more elaborate method of measurement and analysis 
is developed here for the heaving cylinder, to give the amplitude which would 
have been observed in a wave channel of infinite length. Use is made of 
the symmetry of the experimental arrangement. Several improvements 
made in the technique of measurement since the wave-maker experiment are 
reported. 

Comparison of theory and experiment for the wave amplitude shows good 
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agreement, the experimental values being in general a few percent lower than 
the theoretical values. This provides much-needed evidence for the practical 
values of the linearized theory of water waves. 

1. Introduction 
The greater part of the mathematical theory of water waves is based on the 

following assumptions: (1) Density variations and viscosity in the fluid are 
negligible; the motion, if originally started from rest, is then irrotational and can 
be described by a velocity potential. ( 2 )  Non-linear terms in the equations of 
motion are negligible; this seems reasonable if the amplitude of motion is small 
enough. It is important to know in what circumstances the linearized theory 
agrees with experimental measurements. Any such agreement is confirmation 
both of the practical value of the theory and the validity of the experimental 
technique; and where agreement between theory and experiment is esta6lished 
or expected, it may well be simpler to use theory rather than experiment. The 
experimental evidence relating to the linearized theory was discussed by Ursell 
et al. (1959, 92; this paper will henceforth be referred to as I), who pointed out 
that up to 1959 almost all the evidence in favour of the theory related to frequen- 
cies and velocities, rather than to wave forces and wave heights about which there 
was serious doubt. More conclusive evidence was provided by their experiment 
on the height of waves generated by a flat vertical piston wave-maker. They 
obtained very good agreement with the linearized theory for small waves (and 
also a systematic deviation for higher waves for which no theory is available). 
In  their experiment all the assumptions of the theory were simulated, except 
that the absorption of waves at the end of the wave channel was incomplete. 
(Unfortunately, all known wave absorbers reflect a considerable proportion of 
the wave amplitude, and so all measurements depend on the precise length of 
the wave channel. The common failure to allow for incomplete reflexion implies 
a serious limitation on the accuracy of laboratory wave measurement.) They 
developed a method of allowing for incomplete absorption in their experiments, 
and the good results obtained by them depended on this. They also assumed that 
the wave-maker reflected waves incident on it from the absorber like a fixed rigid 
wall; this follows from the linearized theory for the piston wave-maker and 
greatly simplifies the analysis of the experiments. This simplified analysis is 
valid only for a nearly vertical wave-maker, however. 

The present study is concerned with a configuration of both greater complexity 
and greater practical interest than a piston wave-maker. A circular horizontal 
cylinder has its mean position in the mean free surface of the wave channel and 
makes periodic heaving (i.e. vertical) oscillations. The theory is known for a wave 
channel of infinite depth (Ursell 1949). It is here extended to a wave channel of 
finite constant depth, computed and compared with measurements. 

In  $ 2  below, the (two-dimensional) theory for finite depth is given. This 
problem involves two dimensionless parameters (based on cylinder radius, water 
depth, and wavelength), whereas the theory for infinite depth involves only one. 
The wave amplitude and force on the heaving cylinder are computed when the 



Xurface waves generated by an oscillating cylinder 53 1 

absorption at the ends of the wave channel is assumed complete. In  $ 3  the 
experimental arrangement for measuring the wave amplitude is described. An 
effort was made to make the experiment symmetrical about the vertical plane 
through the axis of the cylinder. The absorption a t  the ends of the wave channel 
is again incomplete in these experiments; a method of analysing the measure- 
ments to allow for this is developed in $4 .  Theory and experiment for the wave 
amplitude are compared in $ 5 ,  and it will be seen that the agreement is close. 
(No measurements of forces have yet been made; see, however, Porter 1960.) 

2. Mathematical theory 
The mathematical boundary-value problem, assumed two-dimensional, is 

formulated as follows (cf. Ursell 1949). 
The origin of co-ordinates is taken at the mean position of the centre of the 

heaving circle (the horizontal projection of the cylinder), the equation of the 
mean free surface is y = 0, and the equation of the bottom is y = h > 0. Polar 
co-ordinates are defined? by x = rsin8, y = rcosi3, the equation of the mean 
position of the moving circle being r = a. The motion is periodic with period 
2n/cr. Then the velocity potential @(x, y ; t )  satisfies 

($+&)@(z,y;t)=O in - c o < x < c o ,  O < y < h ,  r > a .  (2.1) 

The boundary conditioris are 

(2.2) 
ao 
au 

K @ + - = O  on y = O ,  r > a ,  
" 

_ -  - 0  on y = h .  a@ 
aY 

where K = @/g,  and 

Also, there is the 'radiation condition' that at  infinity the waves travel outwards; 
and further 

-=  U(t)cosO on r = a ,  

where U(t )  is the simple-harmonic vertical velocity of the centre of the moving 
circle. Since the problem is linear, the potential is proportional to U(t ) ,  and it is 
convenient not to prescribe the amplitude and phase of U(t )  at this stage (see 
equation (2.27) below). The radiation condition is satisfied only approximately 
in our experiments, because of reflexion from the ends of the channel (see $ 4  
below). The downward surface displacement ~ ( x ,  t )  is given in terms of the poten- 
tial @ by 

(2-4)  
a@ 
ar 

(2 .5 )  
i a  

g at 
T/ = - - @(x, 0; t ) ,  

and the pressure p(x, y; t )  by a@ 
P = P9Y-P,, 

With the exception of an important paper by John (1950) on fundamental 
mathematical aspects, all previous work on this problem is concerned with the 

t It is convenient, because of the symmetry of the problem, to measure 8 from the verti- 
cal rather than from the horizontal axis. 
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special case of infinite depth. The theory and computations given by Ursell 
(1949) are useful for small and moderate values of Ka, and it is this work which 
is extended to finite depth in our present paper. In  principle this method works 

F D F 

FIGURE 1. Schematic diagram of experimental arrangement. A-variable speed motor, 
B-reducing gear, C-flywheel, D-lever-type linkage, E-cylinder, F-wave gauges and 
carriages, G-wave absorbers. 

2na/L, 

FIGURE 2. Theoretical amplitude ratios. -, Computed curve ; 
____  , Grim’s curve h/a. = 00. 

for all Ka, but actually the equations become ill-conditioned for large Ka, 
and a different method (Ursell 1953) is then more suitable; this has been used to 
calculate asymptotic expressions for large Ka for deep water (see also Grim 1953). 
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An approximate mathematical theory has been given by Grim (1953) who satis- 
fies the boundary conditions on the free surface and on the cylinder only approxi- 
mately; his results for small and moderate Ka are shown for comparison with 
ours in figures 2 and 3. A critical discussion of earlier approximations by various 
authors is given by Ursell (1954). 

1.2 

1.1 

1.0 

0 9  - 
+a 
f2 
.$ 3 0 8  

g 0 7  
g ,  

a, 
0 
0 

c.!! 0 6  

0 5  

0 4  

030.0 
--- 

1.0 20 3.0 4.0 5.0 

In  the present paper the potential is written as the sum (with undetermined 
coefficients) of wave potentials each satisfying equations (2.1) to (2.3) and the 
radiation condition; the coefficients are to be chosen so that the velocity on the 
circle is given by (2.4). The wave potentials used by Ursell(l949) for the heaving 
cylinder on infinitely deep water were (1) a wave-source potential with a multi- 
valued logarithmic singularity at the origin and (2) single-valued multipole 
potentials singular at  the origin. Analogous wave potentials will now be derived 
for water of constant finite depth, which reduce to the earlier forms when h = 00. 

The singular integrals which arise are to be interpreted as Cauchy principal 
values, and are marked by 9' in front of the integral sign; thus 

d k ]  . K(1-6)  e-ky cos lcx 
dlc= lim [(So +Im ) * e-ky cos kx 

0 K - k  €+ 0 K(1 + E )  
- 

The shallow-water wave-number k, is defined by 

k, tanh k,h = K .  (2.7) 
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2.1. The wave-source potential 

This is 
" cash k(h - y) Cog kxdk 

cos at 
K cosh kh - k sinh kh 

2m cosh k, h 
2koh+sinh2k,h 

-__ coshk,(h-y)cosk,xsinat (2.8) 

= F(x, y) COB at +f(z, y) sin d, say (2.9) 

(see Thorne 1953, p. 714). Clearlyf(x, y) sinat is a standing wave, adjusted (as 
will be seen later) so that the combination satisfies the radiation condition. The 
expansion near the origin is obtained by noting that 

dk 
a, e-ky cos kx 

F(x,y) = 9s ____- 
0 K-k 

(2.10) 

kh K sinh ky - k cosh ky) cos kx 
(K - k) (K cosh kh - k sinh kh) +9/ ;e-  ( dk. (2.11) 

Now (2.10) is the singular term in the deep-water source potential (Thorne 1953, 
p. 710), and its expansion is derived in Appendix A; but (2.11) is clearly regular 
harmonic in lyl < 2h. The series expansion of (2.11) is obtained by substituting 

the expansions m 
coshkycoskx = C. - (kr)2" cos zse, 

8-0  ( Z S ) !  

m 
sinh ky cos kx = ____ (ICrl2'+l cos (2s + 1) e, 

s=(J (2s+ l ) !  

and inverting the order of summation and integration. Thus 

U2s+l e-u du 

0 (v- u)  (v cosh u - usinh u) ' 
G2s+l(v) = 9s" 

(2.12) 

(2.13) 

and y = 0.5772 ... is Euler's constant. It can be shown that the wave-source 
potential (2.8) satisfies the radiation condition. The limit of F(x, y) for large x 
can be found by noting that the integral 

dk 
coshk(h-y)exp (iklxl) s K cosh kh - k sinh kh 
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along the real k-axis (indented at k = ko, where the integrand has a simple pole) 
is equal to the integral along arg k = an, and thus clearly tends to zero as 1x1 
tends to infinity. Thus 

coshE(h-y)exp(ik~x~)dk-ni x (residue at k = ko) --f 0 as 1x1 -+ co. .so % cosh kh - k sinh kh 

(The second term is the finite contribution from the indentation at the pole.) 
Taking real parts we find that 

2ncoshkoh coshk,(h-y)sink,(xl --f 0 as 1x1 +co, 
F(x' ') - 2k, h + sinh 2k, h 

whence F(x ,  y) cos ut +f(z, y) sin ut (2.14) 

277 cosh k, F, 
2ko h + sinh 2ko h 

- coshk,(h-y)sin(k,lzl -at)+O; (2.15) 

and since (2.15) clearly satisfies the radiation condition, the potential (2.14) also 
does so. Similarly F(x, y) sin at - f (x ,  y) cos at satisfies the radiation condition, 
but we shall not use this function. 

2.2. The multipole potentials 

These are 

F2n(x, y) cos at + f 2 n ( x ,  y) sin at and FZn(x, y) sin at - f zn(x ,  y) cos ut,  

where Fzn(x, y) (n = 1,2 ,3 ,  ...) is of the form 

cos2nO K cos(2n-1)O 
Gn(x7 Y) = 7 + r2n-1 (2.16) 

+/m{cjz")(k)sinhky+c&z")(k) coshky}cos kxdk. (2.17) 
0 

The terms f2n(x, y) cos ut and fin(x, y) sin at are standing waves, added so that 
each complete multipole potential satisfies the radiation condition (cf. 9 2.1 
above). The coefficient functions cP")(k) and ck2")(k) are chosen so that F212(x, y) 
satisfies both the free-surface and the bottom condition. For this purpose it is 
convenient to use in (2.16) the representation 

(2.18) 

which is valid when y > 0 (see Whittaker & Watson 1927,s 12.2). It is thus found 
that 

cos2nO K cos(2n- 1 ) s  
4 n ( ~  Y) = ___ +-- __ (2.19) 

dk, (2.20) 

rzn 2%- 1 r2n-1 

e-kh( K + k) ( K  sinh ky - k cosh ky ) k2n-2 cos kx 
K cosh kh - k sinh kh + 
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and the series expansion of (2.20) can be found in the same way as the expansion 
of (2.11) above. It is 

(v + u) ~ ~ m - 1  e-u du s 0 vcoshu-usinhu ‘ 
2F2m-1(v) = 9 ~- 

where by definition 
(2.22) 

The behaviour of F,,(x,y) at infinity can be found, in the same way as the 
behaviour of F(x ,  y) above, to be 

277kEn cosh k,(h - y) sin k, 1x1 
____ - + O  as 1x1 +a. (2.23) 

F271(x’ ’) + ( 2 n i ) G h  k, h( 2k, h + sinh 2k, h)  

%kin Gosh ko(h - y) cos kox 
-~ 

= (2n- l)! coshk,h(2k,h+sinh2k0h)’ 
Thus, if (2.24) 

the combinations 

Pzn(x, y) cos crt + f Z n ( x ,  y) sin d and F2n(x, y) sin crt -fZn(x, y) cos crt 

satisfy the radiation condition. Note that FZn(x, y) reduces to (2.19) when h = co, 
and that f Z n ( x ,  y) then vanishes; the multipole potentials are then wave-free a t  
infinity. 

2.3. Expansion of the velocity potential 

The velocity potential @(z, y; t) is written in the form (gb/ncrJ) $(x, y; t), where 
J is a non-dimensional quantity which is adjusted so that b is the amplitude at 
infinity. Then $(x, y; t) is non-dimensional, and we assume that 

$(x, y; t) = F(x ,  y) cos crt + f (x, y) sin crt (2.25) 

m 

- C -q2n{J’zn(x, ~)s in~t - f2n(x ,  Y) c0~0-t). (2.26) 

Note that in this expansion the amplitude and phase of the wave-source potential 
(2.25) have been arbitrarily prescribed. The coefficients p2n, qzn and also the 
amplitude and phase of the motion of the cylinder are to be found from the boun- 
dary condition on the cylinder r = a, where the prescribed normal velocity is 
proportional to cos 8 (see (2.4) above). We take 

n = l  2n 

2=A(,coscrt++Bsinat)cose on r = a ,  (2.27) 
ar a 

where A and B are additional unknowns. On differentiating the assumed expan- 
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sion for #(x, y ; t )  and equating coefficients of cos crt and sin crt) it  is seen that in the 
range 0 < 0 < &n the unknowns must satisfy the simultaneous equations 

where, after differentiation, r is put equal to a. 
(2.29) 

It is convenient to replace these equations by an equivalent infinite set of 
linear equations in an infinite number of unknowns, obtained (from analogy 
with a Fourier cosine series) by multiplying (2.28) and (2.29) by the complete 
set of functions cos2mB(m = 0,1 ,2 ,  ...) and integrating from 0 to Qn. (When 
h = co, the equations for p2,  are independent of the equations for qZn.) Thus the 
equations for m = 0 are 

A = 471 cos Ka - (y + In Ka) sin Ka 

s=o 

m ( -  ’’ (E)2s+1G,+l(Kh) 
+ K h Z  ~ 

s=o(2s+1)!  h 

where 

and 

m m  2n+28 
- K a  Z __--__- ( - 11” (u) P2n %n+a-l(Kh) 

s=o n=l (Zn)! (2s+ l)! h 

(k, a)2n 271. sin k, a tanh k, h 
C- Q 2 n ~  

- _ _  
2k,h+sinh2k0h n=l (Zn)! 

B = nsink,asinh2k0h +Ka 5 ( -  1ln+l!l2n 
2k, h + sinh 2k, h 

- K a x  C 

n=l 2n(2n- 1)  

m w  

~ 2 S + l  e-U du 
Gzs+l(v) (v - u) (v cosh u - u sinh u)’ 

(u + v) u2s+1 e-u du 
v cosh u- u sinh u = v2G2s+Av) - G2s+&4. 

(2.30) 

(2.31) 

The equations which arise when (2.28) and (2.29) are multiplied by cos 2mO (m > 1) 
and integrated over (O,+n) are similar but more complicated and will not be 
written down here. If  A and B are eliminated from these by means of (2.30) 



538 Y .  X. Yu and F .  Ursell 

and (2.31), the new equations involve only the unknowns pzn and qZn, and are 
seen to be of the form 

where am,& ym and amn are known functions of Ka and h/a, and where each 
unknown occurs outside as well as inside the sign of summation. This simul- 
taneous system involving the two unknown sets pzn and qzn can be reduced in 
several ways to the standard form involving only a single set. The simplest is 
merely to write qzn = pzn--l; this is convenient for numerical work. Alternatively, 
by adding i times (2.33) to (2.32), a single set for pZm+iq2, is obtained; this is 
convenient for theoretical work on the convergence of the system. Or one may 
note that q2n occurs in all the equations (2.32) only in the combination 
C(koa)2n q2J(2n)!,  and pzn in (2.33) in a similar combination; these combinations 
may be treated as additional parameters (see Ursell 1950, p. 147). Any one of 
these methods leads to a system of the singly-infinite form 

p z +  2 = a; (m = 1,2 ,3 ,  ...), 

where again each unknown occurs outside as well as inside the sign of summation. 
A system of this form corresponds to Fredholm's integral equation of the second 
kind and has a similar theory if certain convergence conditions are satisfied, 
e.g. if C I; I and C lazl are convergent. These conditions are already known 
to hold for infinite depth except for those values of Ka, if any, where the infinite 
determinant vanishes and for which the source term is not needed in the expan- 
sion. It can be shown that the same convergence conditions also hold for finite 
depth but the proof will not be given here. It follows that the potential $(x, y; t )  
can indeed be expanded in the form (2.26). 

2.4. The amplitude ratio 
When all thep2n and qzn are known, A and B can be found from (2.30) and (2.31). 
The dimensionless parameter J defined at  the beginning of $2.3 can also be ex- 
pressed in terms of p,,  and qzn. For the surface displacement is 

m 

n=l 

which tends to 

as 1x1 tends to infinity-see (2.15), (2.23), (2.24). By the definition of b this has 
amplitude 6, and it follows that 

1 +  sech2koh n-1 C 0 (k (2n)! a)2np2n]2]i, (2.34) 
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which evidently tends to 1 as Kh tends to infinity. It is now possible to find the 
amplituderatio (wave amplitudeat infinity)/(amplitude of motionof the cylinder), 
for from (2.27) the vertical velocity of the circle is 

( A  cos at + B sin at), 
nuJa 

which has amplitude (gb/naJa) ,/(A2 + B2), the displacement has amplitude 
(gb/na2Ja) , / (A2  + B2) = (b/nKaJ) , / ( A 2  + B2), and the amplitude ratio is seen 
to be 7i-KaJ/,/(A2+B2), where J is given by (2.34) and A and B by (2.30) and 
(2.31).  

2.5. The vertical force on the cylinder 

When the cylinder oscillates vertically, the hydrostatic upward force on it 
per unit length is evidently Zpgay, (where y ,  is the instantaneous downward 
vertical displacement). There is also a hydrodynamic force, obtained by re- 
solving and integrating over the cylinder the dynamic pressure, which is of 
magnitude -p(a/at) {(gb/naJ) $(x, y ;  t )>;  Thus the downward hydrodynamic force 
per unit length is 

Fv = __ pgb Sin 2 a cos ode 
7i-a~ -+, at 

- - -peb [M(Ka, sin ut + N(Ka,  :) cos at] , 
7i-J 

where from (2.26) 

F(a sin 0, a cos 8 )  cos 8d8 

FZn(a sin 8, a cos 0)  cos 0d0 
n=l 

1 1. 

-4. 
- q2,/ fin(a sin 0, a cos 0)  cos m e  , 

and N(Ka ,  = - 1"" f (a sin 8, a cos 8) cos ede 
- i n  

f2,(asin8,acos8)cos8d8 

+ q2,/** F2,(a sin 8, a cos 0)  cos m e  . 
- i n  1 

It is traditional to resolve the force into two components, in phase respectively 
with the velocity and the acceleration of the vertical motion of the cylinder. We 
have 

Fv = -(Msind+Ncosut)-  pgab 
7lJ 

Pgab ( A  cos ut + B sin at) - 
A2 + B2 7lJ 

P P b  ( A  sin rk - B cos crt) - AG B, 7i-J ' 

N A + N B  

MA-NB 

= -- - 

-- 
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Over a cycle the former component does work which is carried away to infinity 
by the waves, and its coefficient is easily expressed in terms of the wave ampli- 
tude at infinity. The latter component is 

2 N B - M A  - ln-pa2- -___ - x (acceleration of cylinder), 
7r A2+B2 

and we define the dimensionless virtual-mass coefficient C, by 

2 N B - M A  
C, Ka,- = - ___--- ( a) n- A2+B2 ’ 

which depends on the frequency. The notion of virtual mass is natural for a body 
oscillating in an inviscid fluid without a free surface, where the force is always 
proportional to the acceleration and where the virtual mass is thus independent 
of the frequency. In  wave problems the resolution is artificial. 

2.6. Numerical results 

The amplitude ratio and virtual-mass coefficient which are functions of the two 
variables Ka and h/a were computed for 0.15 < Ka < 6.0 and for hla = 2 ,4 ,10  
and 00. The computations were made on the IBM-704 digital computer at the 
Computation Center of the Massachusetts Institute of Technology. Computa- 
tions were first made for infinite depth, all unknowns up to pa2 and qa2 were 
retained. Since for infinite depth the computation of the p’s is independent 
of the computation of the q’s, this meant the solution of two systems of 16 linear 
equations, each with 16 unknowns. The results were checked against a similar 
calculation retaining only 8p’s and 8 q’s, and against the results of the manual 
computation in Ursell(1949), and agreement to 3 significant figures was observed. 
Computations were then made for the other values of hla, retaining 8p’s and 
8q’s. As an additional check, values of the two integrals G2s+l(v) and S2,+,(v) 
obtained manually were compared both with results from the IBM-704 and with 
uniform asymptotic expansions (not given here), valid for large v and s. To avoid 
the infinities on the real u-axis, see (2.13) and (2 .22) ,  the integrals were trans- 
formed by moving the line of integration to arg u = &i- in the complex u-plane. 

The computed curves of the amplitude ratio against Ka for the four values of 
h/a are shown in figure 2. The values for h/a = 10 and h/a = 00 effectively coin- 
cide, and it appears that the effect of finite depth on the amplitude ratio is not 
appreciable until the ratio of depth to cylinder radius is equal to 2. For com- 
parison, Grim’s curve (1953) is also shown in figure 2 for h = 00. The computed 
curves of the virtual-mass coefficient C, against Ka for the four values of hla 
are shown in figure 3. It is known that cF tends to infinity like a multiple of 
In (l/Ka) when Ka tends to zero. The dependence of C, on h/a is seen to be stronger 
than the dependence of the amplitude ratio. However, the curves for hla = 00 
and h/a = 10 again coincide very nearly. Grim’s curve, for h = co, is also shown 
for comparison. 
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3. Description of experimental apparatus 

3.1. Wave channel and general arrangement 

The experiments were made in the wave channel of the Hydrodynamics Labora- 
tory of the Massachusetts Institute of Technology. The channel is 1 O O f t .  long, 
with a rectangular section 2ift .  wide and 3 ft. high, with glass walls and bottom. 
The clear length available for the present study was limited to about 7Oft. with 
a horizontal bottom. The cylinder generating the waves was located at  the middle 
of the clear length with its axis perpendicular to the side walls of the channel; 
the clearances between the ends of the cylinder and the side walls were about 
t in .  The wave energy travelling away from the cylinder was partially absorbed 
by two similar wave absorbers made of aluminium wool, near the two ends of the 
clear length of the channel and placed symmetrically with respect to the cylinder. 
An effort was made to make the experiment symmetrical about the vertical 
plane through the axis of the cylinder. The arrangement is shown schematically 
in figure 1. 

3.2. Wave-making unit 

This consisted of three parts, a drive unit, a linkage and a cylinder (see figure 1). 
The drive unit had a 9 horsepower alternating-current variable-speed motor 
coupled with a 12:l  reducing gear giving an output speed range from 0 to 230 
revolutions per minute. A flywheel of diameter 1 ft. was mounted on the output 
shaft of the reducing gear and carried an eccentric block which was connected by 
a rod to one of the arms fixed to the steel shaft of the linkage. The shaft, 13in. 
in diameter and 39ft. long, was supported with its axis normal to the channel 
walls by two pillar blocks bolted on the top flanges of the walls. It carried three 
lever arms, each 1 ft. long and each with one end rigidly fixed to the shaft. One 
of the arms was connected to the flywheel, the other two supported the cylinder 
by means of supporting rods. The stroke of the cylinder could be varied over a 
range of 0 to 6 in. by changing the position of the eccentric block on the flywheel. 

The two water-tight cylinders, one of 6 in. and one of 12 in. outside diameter, 
were made of Plexiglass tubing of +in. wall-thickness. Each cylinder was of 
length 294 in., of semicircular section with vertical sides extended 4in. above the 
water surface. In the experiments the axis of the cylinder in use was normal to the 
side walls of the channel, and there was a gap of *in. between the ends of the 
cylinder and the channel walls. The position of the cylinder could be adjusted 
by replacing the supporting rods by rods of different lengths. The hollow cylinder 
was filled with several sand bags so that its weight was equal to the buoyant 
force when its semicircular section was fully immersed in water. A coil assembly 
of the linear variable differential transformer (see $3.5) for measuring the dis- 
placement of the cylinder was installed on the cover plate of the cylinder. 
Guiding devices were provided to ensure vertical oscillation of the cylinder. 

3.3. Wave absorber 

A permeable type of absorber with a total length of Sift. made of aluminium 
wool was located at  each end of the channel to dissipate the energy of the wave 
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motion generated in the middle of the channel. Each absorber had two sections. 
The first section was a cage 44ft. long, 2Qft. wide, and Zgft. high, made of wire 
screen and divided into three vertical compartments each 14 ft. long and packed 
with aluminium wool. The density of packing increased with distance from 
the wave-maker, the total weight of aluminium wool in the three compartments 
being 2,4 and 61b., respectively. Behind the cage there was a pile of aluminium 
sausages, each 5ft. long and about IOin, in diameter, laid lengthwise in the 
channel. Two vertical rigid walls were placed behind the absorbers for symmetry. 
With these absorbers the reflexion in the experiments did not exceed 20 % and 
was usually less than 10 yo. 

3.4. Wave-height gauge 

Two resistance-type wave-height probes were mounted on movable carriages 
(see figure 1) to measure the wave height at different locations along the channel. 
The sensing element of each probe, composed of two platinum wires 0.008in. 
in diameter and about 1 ft. long, was connected to one branch of a bridge circuit. 
When the elevation of the water surface changed, the immersed length of the wire 
also changed. In  fact, since the resistance of the gauge is proportional to the 
length of the wire above the water surface, the current flowing through it varies 
linearly (very nearly) as the displacement of the water surface from its mean 
position. The output signal was amplified and recorded on a Sanborn recorder. 

Each carriage could be driven along the channel at a constant speed of &in. 
per second, and a continuous record was obtained of the wave height as a function 
of time and distance. The distance of each gauge from the axis of the cylinder 
was recorded by a remote electric marker connected to the recorder. 

3.5. Linear variable differential transformer 

This transformer (Linearsyn Model S 2) measured the vertical displacement of the 
cylinder from its mean position. It converts the displacement into an electrical 
signal directly proportional to the displacement. This device has two parts, a 
coil assembly 11Qin. long, with an inner diameter of 0-312in. and an outer dia- 
meter of fin., and a magnetic core of diameter )in. and length gin. which can 
slide into the coil assembly. The magnetic core was screwed to a point-gauge 
stem clamped t o  a beam spanning the channel above the water; the coil assembly 
was fixed to the cylinder and followed its motion. The displacement of the coil 
assembly was also recorded by the Sanborn recorder. The transformer had a 
full range of stroke of 4 in. and an excitation voltage of 6 V. 

4. Analysis of wave reflexion 
In  the mathematical theory of $2 it was assumed that the wave channel is 

infinitely long, or that absorption of wave energy at the ends of the channel is 
complete. In  practice the absorption is incomplete (the amplitude reflexion 
coefficient is at  least a few percent, and in the present aeries of measurements 
is sometimes as much as 20 %); and unless it is corrected for, it  is one of the most 
serious limitations on experimental accuracy. This difficulty has been discussed 
at length in I, $4.1, where it is shown how it can be overcome when the waves 
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are generated by a vertical or nearly vertical wave-maker, but the method then 
used took advantage of the simple geometry. Here we shall have to proceed more 
elaborately. 

In  the following analysis it will be assumed that the motion is exactly sym- 
metrical about x = 0. It is then sufficient to consider the region x > 0 as will 
henceforth be done. It will also be assumed that the effect of viscous attenuation 
is much smaller than the effect of partial reflexion (see I, $94.2, 7.2). 

Let 4, denote the wave motion as measured. At a distance from both the 
cylinder and the absorber, the motion is effectively the superposition of two 
regular wave trains, and there the downward surface displacement is (with a 
suitable choice of time origin) 

q, = A ,  sin (k, x - a t )  - A ,  sin (k, x + v t  + 6), (4.1) 

where A,, A ,  and 6 can be found by measuring the variation of wave amplitude 
along the channel, and where A,  $ A,. The vertical velocity of the cylinder is 
denoted by 

The wave amplitude at distance x is easily seen to be 

(4.2) 

J(A2,+A;+2A1A2COS (2k0x+6)). (4.3) 

v, = - la cos (at + E). 

Prom the motion $,, another dynamically possible motion can be derived by 
reversing the sign of t. (It is in this argument that the influence of viscosity 
is neglected.) More precisely, we replace t by - t - (6/a) to obtain a motion $z. 
Then, in an obvious notation, we have 

rz = A,  sin ( k,x - at) - A ,  sin ( k,x + at + a), 
v, = -1lacos(vt+6-€). 

Now let us consider the composite motion $3 = 4,- (,&/A,) $z. Then the surface 
displacement is r3 = Al{l- (A2/A1)2)sin(k,x-at), 

and the velocity of the cylinder is 

(4.4) 

v3 = - lv{cos(at+E)-(A,/A,)cos(at+6-€)} 

= - Zva cos (at + 6,), say, 

where acosSl = cos~-(A~/AJcos(6-~)  and asin&, = sine-(A2/A,)sin(6-s). 
Equation (4.4) shows that $3 satisfies the condition of complete absorption, and 
the amplitude ratio for $3 is 

This is the quantity which is to be compared with the theory of $2, and we now 
see how it is related to the amplitudes and phases of the actual measured motion 
$1- 
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5. Methods of measurement 
In  order to verify the validity of the assumptions of the linearized theory, 

measurements were made to determine the wave amplitude when the circular 
cylinder was given a forced heaving motion. The analysis of $ 4  shows how the 
amplitude in a hypothetical channel of infinite length may be deduced from 
measurements on the actual wave motion in a channel of finite length. The follow- 
ing measurements are needed for the amplitude ratio (see equation (4.5)): (i) water 
depth h;  (ii) wavelength L = 27r/k0; (iii) amplitude A,  of the incident wave, 
amplitude A ,  of the reflected wave, and relative phase 6 (see equation (4.1)); 
(iv) amplitude 1 and phase e of the cylinder motion (see equation (4.2)). 

5.1. Water depth 

This was measured directly (in feet) with a wooden scale immersed through 
the still-water surface. For the range of water depths involved, the error was 
less than 1 yo. The consequent error in the amplitude ratio was thus negligibly 
small (much less than 1 yo). 

5.2. Wavelength 

This was obtained indirectly from measurements of the wave period T by use of 
the formulae 

(277/T)2 = gk,tanhk,h, and L = 27r/k0. 

An electric timer which reads to the nearest O.02sec was used to record the 
time elapsed for 20 oscillations of the cylinder. The average value of three 
measurements (one at  the beginning of the run, one at  the end, and one in between) 
was adopted. It was found that the motor speed was nearly constant, the 
maximum difference in the three values being less than 0-5 Yo. For relatively deep 
water the consequent error in the wavelength would be less than 1 %. 

5.3. The wave amplitudes and the wave phase 

These are obtained from the variation of wave amplitude along the channel 
(see equation (4.3)). Two resistance gauges, of the type described in $3, were 
calibrated statically by being held in still water at  known levels. Changes in 
the immersed length were read on a vernier scale to 0.1 mm. The gauges were 
also calibrated dynamically, being given a vertical periodic motion of known 
amplitude in still water. The maximum difference between the static and the 
dynamic calibrations was about 0.03 cm, of the order of 3 % of the amplitude. 
It was therefore thought sufficient to make only static calibrations through- 
out the experiments. 

In  each run the two gauges were placed one on each side of the cylinder at  
20ft. from its axis, and when the wave motion had reached a steady state they 
were made to move slowly towards the cylinder. Since the wave motion approxi- 
mates to the sum of two wave trains only at some distance from both the cylinder 
and the absorbers, measurements were confined on each side to a range of 7 ft., 
namely, from 13 to 20 ft. from the axis of the cylinder. (Note that for the analysis 
of $4, measurements over at  least half a wavelength are needed.) The record of 
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wave height against position (see equation (4.3)) is the wave-height envelope, 
from which the arithmetic means of the wave-amplitude maxima and similarly 
of the minima on either side of the cylinder were found. The assumption of 
symmetry was checked by comparing the mean maxima and mean minima from 
both sides, and it was found that the discrepancy was less than 4 yo in most runs. 
The mean of the values on the two sides was then taken. The average of the wave- 
amplitude maxima was used as an estimate for A, + A,; similarly the minima 
were used to give an estimate for A, - A,. The angular phase S was determined by 
measuring the distances of the wave height maxima from the cylinder, subtract- 
ing an appropriate integral multiple of +L, and dividing by L/4n (see equation 
(4.3)). An average was taken for each side of the cylinder, and it was found that 
the discrepancy between the mean phases on the two sides was larger than for the 
amplitudes, particularly for short-period waves as might have been expected. 
But for such waves the reflexion was small, and the uncertainty in 6 was of little 
consequence. Viscous attenuation of wave amplitude was neglected throughout. 

5.4. Amplitude and phase of the oscillating cylinder 

The amplitude 1 of the oscillating cylinder was measured in centimetres with a 
linear variable differential transformer. The transformer was calibrated by 
moving the magnetic core up and down in the coil assembly. The movement could 
be read from a vernier to 0-lmm, and was recorded on the Sanborn recorder 
simultaneously with the wave-height record. It was found that the cylinder 
motion was of nearly constant amplitude throughout each run, and that its form 
was nearly sinusoidal. (For an account of the effect of higher harmonics, see I, 

The phase e was measured by moving the wave-height probe along the channel 
until the wave motion was either in phase or 180" out of phase with the cylinder 
motion (both motions being recorded on the Sanborn recorder). It is easily shown 
that the horizontal co-ordinate x a t  such points satisfies 

A, sin (k,z + e )  - A ,  sin (k,z + S- e )  = 0; 

and since A,/A, is small, e differs from - k , x  by a multiple of n, very nearly. 
Here x is again the distance from the axis of the cylinder, and E, = 2n/L is the 
value calculated from the period. 

In  calculating the phase angles e and 6, it  seems that a large error might be 
committed, since the distance from the cylinder (which may be several wave- 
lengths) enters into both calculations. Actually the angle which appears in the 
formula (4.5) for the amplitude is 26 - 6, and it is easily seen that this depends 
(to our approximation) only on the relative distance between two points, not 
on their absolute distance from the cylinder axis. 

94.3.) 

6. The amplitude ratio: comparison of theory and experiment 
Measurements were made for two cylinders with diameters of 6 and 12in. 

Each cylinder was immersed in water 10.5 and 22.75in. deep. Thus there 
were four ratios of water depth to cylinder radius, namely 7-58, 3-79, 3.50 and 
1-75. For each fixed value of this ratio measurements were made for different 
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wave periods and also for different strokes of the cylinder motion. The stroke 
of the cylinder was kept small to simulate the small-amplitude wave of the theory, 
and yet was large enough to generate waves with height which could be measured 
with sufficient accuracy (maximum error about 3 %) using the present apparatus. 
The methods of measurement were described in detail in $5 .  

1.0 

0 9  

0 8  

u.7 

h 

0 
3 0.6 
d 
-2 
.* 3 0 5  

2 

3 

Ld 8 - 0 4  

0 3  
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0 1  

FIGURE 4. Comparison of theoretical and measured amplitude ratios. -, Computed 
curve. h = water depth; a = radius of cylinder; Lo = deep-water wavelength. 

a 

0 7.58 3 
5 3-78 6 
0 3-50 3 
e 1.75 6 

measured hla (in.) 

The measurements are summarized in Appendix B, tables 1 to 4. Experimental 
results were limited to values of Ka less than 3. At higher frequencies water 
in the gaps between the walls of the channel and the ends of the cylinder tended 
to oscillate violently even when damping screens were put in the gap, and the 
recorded wave-height envelope was very irregular. No attempt was made to 
analyse such data. 
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The amplitude ratio, corrected for wave reflexion as in $4, is plotted in figure 4 
which also shows the results of the theoretical computations. (Although the 
values of h/ain the experiments do not coincide with thevalues of h/a in the theory, 
it has not been thought worth while to carry out any formal interpolation.) 
The discrepancy between experiment and theory is seen to be systematic but 
small. The experimental points in general lie below the theoretical values, but the 
discrepancy is usually less than about 5%. (A similar discrepancy found in I 
could be partly attributed to finite wave steepness. We have not investigated 
the effect of steepness here.) This agreement between theory and experiment 
on amplitude ratio is believed to be as good as can be expected wifh the present 
experimental arrangement. 

For comparison a few points (not shown in figure 4) were also analysed by a 
simpler method, the amplitude ratio being taken as A,/l instead of formula (4.5). 
This can be justified as follows: If (Az/AJa is neglected, formula (4.5) is nearly 

1 A , [ l + ~ c o s ( 2 s - 6 )  A , 
I A1 

which has mean value A,/Z when 6 varies between 0 and 2n. Thus if the length of 
the channel is regarded as an unknown multiple of the wavelength, which means 
that 6 is regarded as random, the appropriate value for the amplitude ratio is 
A$ It was found that the scatter of the points obtained in this way was notice- 
ably greater than in figure 4. Thus if experimental accuracy is desired in a channel 
of finite length it appears that the complications of the preceding analysis cannot 
be avoided. 

7. Conclusion 
We have shown how the mathematical linearized theory of the heaving cylinder 

can be extended to a channel of finite constant depth. We have also shown how 
wave measurements in a channel of finite length can be analysed so as to give the 
wave amplitude in a channel of infinite length when the experiment is arranged to 
be symmetrical about the vertical plane through the axis of the cylinder. 

The agreement between theory and experiment for the wave amplitude was 
found to be very satisfactory. No experiments have yet been made on the virtual 
mass coefficient, but Porter (1960) has calculated and measured the pressure 
distribution on a heaving circular cylinder. The agreement which he has obtained 
between theory and experiment is surprisingly good, considering that he has not 
apparently made any allowance for the finite length of the channel (nor for 
finite depth though this is less important). A non-symmetrical experiment, the 
partial reflexion of a wave train by a fixed circular cylinder, has been described 
by Dean & Ursell (1959). Amplitudes and forces were measured and compared 
with theory. Naturally the measurements were more numerous and the analysis 
more complicated than for a symmetrical experiment. 

This investigation was sponsored by the Office of Naval Research, United 
States Department of the Navy, under Contract no. Nonr-1841(44). 

35-3 



548 Y .  S. Yu and F. Ursell 

R E F E R E N C E S  

DEAN, R. G. & URSELL, F. 1959 Interaction of a fixed semi-immersed circular cylinder 

GRIM, 0. 1953 Berechnung der durch Schwingungen eines Schiffskorpers erzeugten 

JOHN, F. 1950 On the motion of floating bodies. 11. Comm. Pure Appl. Math. 3,45-101. 
PORTER, W. R. 1980 Pressure distributions, added-mass, and damping coefficients for 

cylinders oscillating in a free surface. Inst. Engng Res., Univ. of Calijornia, Berkeley, 
Series 82, Issue 18. 

THORNE, R. C. 1953 Multipole expansions in the theory of surface waves. Proc. Camb. 

URSELL, F. 1949 On the heaving motion of a circular cylinder on the surface of a fluid. 

URSELL, F. 1950 Surface waves on deep water in the presence of a submerged circular 

URSELL, F. 1953 Short surface waves due to an oscillating immersed body. Proc. Roy. 

URSELL, F. 1954 Water waves generated by oscillating bodies. Quart. J .  Mech. Appl. 

URSELL, F., DEAN, R. G. & Yu, Y. S. 1959 Forced small-amplitude water waves: a com- 

WHITTAKER, E. T. & WATSON, G. N. 1927 Modern Analysis, 4th ed. Cambridge Univer- 

with a train of surface waves. M.I.T. Hydrodynamics Laboratory, Tech. Rep. no. 37. 

hydrodynamischen Krafte. 56.  schiflbautech. Ges. 47, 277-96. 

Phil. SOC. 49, 707-16. 

Quart. J .  Mech. Appl. Math. 2, 218-31. 

cylinder. I. Proc. Carnb. Phil. Soc. 46, 141-52. 

SOC. A, 220, 90-103. 

Math. 7, 427-37. 

parison of theory and experiment. J .  Fluid Mech. 7, 33-52. 

sity Press. 

Appendix A. Note on the expansion of the wave-source potential 
Let the term (2.10) be denoted by Fl(x, 9). Then 

e--ku cos kxdk  m e-nq+in[ 
F1(q y )  = 91 ~- ~ = Re 9I0 ___ dv 

0 K - k  1 - v  

where 6 = Kx, 7 = Ky, and 1; = q-it = Kre-ie. 

Clearly f1(Q is related to the exponential-integral function and is analytic in 
q > 0. Suppose first that 1; is real and positive. Then 

also Euler's constant y = 0.5772 ... is given by 

Then, by simple algebra, 
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whence 

This relation has been proved on the assumption that [ is real and positive, but 
both sides are analytic functions when 7 > 0, and so the relation holds a t  least 
in the half-plane 7 > 0, and in fact in the whole [-plane cut along the negative 
y-axis. On putting < = Kre-** and taking the real part, it  is found that 

O0 ( - K r ) m  ( -Kr)m Fl(x, y) = In K r  2 ___ cosmf3-OX ~ sin me 
m! 0 m! 

'-m"lrP((: ; m 7 ( -Kr )m + r C  ___ cosmO- c ___ -+-+...+- cosmo. 
0 m! 1 

Appendix B. Summary of experiniental results 
The following notation is used: 

T = measured period of waves; 

L, = gT2/2n, deepwater wavelength calculated from the period; 

21 = stroke of vertical motion of cylinder; 

Ka = 2na/Lm, where a is the cylinder radius; 

H,,,, H,, = maximum and minimum wave heights from crest to trough; 

A1 = i ( H m a x + N r n i n ) ;  

A2 = i ( N m a x - H m i n ) ;  

6 = wave phase (see 95.3); 

F = phase of cylinder motion (see 95.4); 

R, = amplitude ratio (see equation (4.5)). 
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Run L m  21 H,, %nlll 2e-S 
no. (ft.) (cm) (cm) (cm) A,/A, (nrad)  K a  
1 4-40 2.46 1-12 1.01 0.057 1.37 0.357 
2 3.65 2.46 1.28 1.22 0.024 1.83 0.431 
3 2.98 2-46 1.45 1.30 0.057 0.63 0.527 
4 2.46 2.46 1.58 1.43 0.030 1.68 0.639 
5 1.87 2.46 1.95 1.64 0.083 0.67 0.834 
6 1.32 1.82 1-60 1.34 0.088 0.45 1.19 
7 1.07 1.86 1.78 1.49 0.092 0.56 1.47 
8 6.20 3.03 1.05 0.85 0.105 1.74 0.253 
9 9.00 3.03 0.91 0.63 0.19 1.35 0.175 

10 8.20 3.03 0.89 0.67 0.105 1.71 0.192 
11 9.10 3.03 0.94 0.63 0.19 1.38 0.173 
12 7.61 3.03 0.96 0.76 0-12 0.41 0.206 
13 1.67 2.15 1.79 1.59 0.060 1.04 0.940 
14 1.51 1.56 1.27 1.09 0.076 0.59 1.04 
15 1-15 1.67 1.44 1.06 0.15 1.74 1.37 

TABLE 1. Experimental results for h/a = 7.58, a = 3 in. 

R-4 
0.451 
0.514 
0.543 
0.610 
0.695 
0.810 
0.852 
0.289 
0.223 
0.267 
0.231 
0.286 
0.735 
0.765 
0.839 

Run L m  21 H-x Hmln 
no. (ft.) (cm) (cm) (em) 
1 2-80 1-31 1-13 0.90 
2 1.50 1-40 1-26 1-08 
3 1-72 1-41 1-26 1-07 
4 3.08 1.31 1.09 0-96 
5 7.67 2.65 1.44 1.30 
6 12.1 2.68 1.01 0.73 
7 8.00 2.66 1.24 1.03 
8 6.49 2.66 1.40 1.18 
9 5.42 2.66 1.53 1.39 

10 4.47 2.66 1.88 1.72 
11 3.70 2-66 2.06 1.76 
12 3.31 2.67 2.29 2-00 
13 1.62 1.97 1.69 1.46 
14 2.33 1.85 1.61 1.41 
15 1.12 2.06 1.77 1.51 
16 1.28 2.06 1.80 1.59 

A2IAI 

0-104 
0.052 
0.079 
0.068 
0.053 
0.103 
0.090 
0.110 
0.048 
0.046 
0.080 
0.069 
0.073 
0.066 
0.080 
0.062 

2e-S 
(n rad) 

0.30 
0.41 
0.26 
0.39 
0.57 
0.39 
0.04 
0-27 
0.02 
0.80 
1.43 
0.84 
1.75 
0.42 
1.55 
1.59 

Ka 

1.12 
2-10 
1-83 
1.02 
0.410 
0-260 
0.393 
0.484 
0.580 
0.703 
0.850 
0.950 
1.95 
1.35 
2.80 
2.45 

R A  

0-801 
0-838 
0.864 
0.791 
0.507 
0.330 
0.462 
0.513 
0.575 
0.652 
0.700 
0.760 
0.838 
0.823 
0.799 
0.827 

TABLE 2. Experimental results for hla = 3.78, a = 6 in. 
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Run 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

~~~~~~~~~ 

L,  21 H,, H* 26-3 
(ft.) (em) (cm) (em) A,/A, (nrad)  Ka 
1.46 2.38 2.06 1.65 0.113 1.16 1.07 
1-61 2.38 1.97 1.71 0.073 0-42 0-976 
3.33 2.30 1.30 1.11 0.079 0.69 0.471 
4.86 2.30 0.97 0.87 0.053 1.95 0.323 
5-99 2-30 0.80 0.69 0.073 0.28 0-263 
5.06 3.24 1.24 1-17 0.029 1.85 0.283 
6-20 3.24 1.15 1.02 0.062 1-21 0.253 
7-25 3.24 1-01 0.80 0.114 0.54 0.209 

13.3 3.24 0.69 0.54 0.121 0.57 0-118 
20.7 3.24 0 5 4  0.37 0.191 1.58 0.076 

TABLE 3. Experimental results for h/a = 3.50, a = 3 in. 

~~ 

RA 

0.792 
0-781 
0-501 
0.421 
0.338 
0.377 
0.349 
0.278 
0.194 
0.138 

Run L, 21 Hm,  Hdll 
no. (ft.) (om) (cm) (cm) 

1 20.5 3.24 1.09 0.86 
2 16.4 3.24 1.14 0.88 
3 9.31 3.24 1.60 1.37 
4 7.23 2.63 1.49 1.29 
5 5.35 2.63 1.69 1.56 
6 4.31 2.63 2.04 1.79 
7 3.71 2-63 2.16 1.95 
8 3.02 2.63 2.49 2.11 
9 1.48 1.43 1.39 1.18 

10 1.36 1.43 1.32 1.20 
11 2-52 1.31 1.26 1.05 
12 1.37 1.43 1.28 1.15 
13 1-72 1-92 1.90 1.67 
14 1-99 1.91 1.83 1.65 
15 3.16 1.83 1.57 1.44 

A,/A, 
0.12 
0.13 
0.078 
0.072 
0-043 
0.068 
0.053 
0.083 
0-081 
0-048 
0.095 
0.049 
0.066 
0.050 
0.042 

26-6 
(n rad) 

1.86 
1.13 
0.59 
1.67 
0.18 
0.78 
0.93 
1.37 
0.40 
0.19 
0.30 
1.90 
0.45 
1.56 
0.18 

Ka 

0-154 
0- 192 
0.338 
0.435 
0.588 
0.729 
0.847 
1.04 
2.12 
2.32 
1.25 
2.30 
1.83 
1.58 
0.994 

R* 
0.330 
0.347 
0.443 
0.544 
0.638 
0-685 
0.743 
0.837 
0.920 
0.914 
0.900 
0.894 
0.928 
0.934 
0.820 

TABLE 4. Experimental results for h/a = 1-75, a = 6 in. 


